PLX015987
GSE120667: Acc1 determines memory potential of individual CD4+ T cells by regulating de novo fatty acid biosynthesis [RNA-seq]
- Organsim mouse
- Type RNASEQ
- Target gene
- Project ARCHS4
Immunological memory is central to adaptive immunity and protection from disease. Changing metabolic demands as antigen-specific T cells transition from effector to memory have been well documented, but the cell-specific pathways and molecules that govern this transition are poorly defined. ACC1 is a rate-limiting enzym in fatty acid biosynthesis. We show that genetic deletion of ACC1 enhanced the formation of CD4+ T cell memory, and that inhibition of ACC1 function enhanced memory T cell formation during parasite infection in mice. ACC1-deficient effector Th cells had similar metabolic signatures to wild-type memory Th cells, and Acaca expression was inversely correlated with a memory gene signature in individual cells. Single cell analysis allowed us to identify a memory precursor-enriched population (CCR7hiCD137lo) present during early differentiation of effector CD4+ T cells. Thus, fatty acid metabolism directs cell fate determination during the generation of memory CD4+ T cells. SOURCE: Yusuke ENDO (san3tamariayuyu@chiba-u.jp) - Immunology Chiba University
View on GEOView in PlutoKey Features
Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreAnalyze and visualize data for this experiment
Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.
Read about post-pipeline analysisView QC data and experiment metadata
View quality control data and experiment metadata for this experiment.
Request import of other GEO data
Request imports from GEO or TCGA directly within Pluto Bio.
Chat with our Scientific Insights team