PLX073576

GSE119378: Transcriptional landscape changes during human embryonic stem cell derivation

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Currently, there is only minimal information elucidating the transcriptional changes occurring during the in vitro transition of the inner cell mass (ICM) towards the human embryonic stem cell (hESC) stage and the role played by the post inner cell mass intermediate (PICMI). In this study, we perform in-depth analysis of the transcriptional heterogeneity between these three stages of hESC derivation in order to correlate their downstream effects on pluripotency states and differentiation. We reveal that although PICMI is transcriptionally in close proximity to the hESC profile and distinct from ICM, it exhibits upregulation of primordial germ cell markers, dependence on LIF signaling, upregulation of nave pluripotency-specific signaling networks and appears to be a switching point from nave to primed pluripotency. This indicates similarities with mouse epiblast-like cells displaying a transient state of pluripotency, between nave and primed pluripotent states. Overall, we highlight the need to gain insight into the molecular and transcriptional landscape during hESC derivation, which will further help in the derivation of human PGCs and nave hESCs in vitro which remains inefficient. SOURCE: Laurentijn Tilleman Ghent University

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team