Key Features
Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreGenetic drivers of cancer can be dysregulated through epigenetic modifications of DNA. While the critical role of DNA 5-methylcytosine (5mC) in the regulation of transcription is recognized, the functions of other non-canonical DNA modifications remain obsure. Here, we report the identification of novel N(6)-methyladenine (N6-mA) DNA modifications in human tissues and implicate this epigenetic regulation in human disease, the highly malignant brain cancer, glioblastoma. Glioblastoma upregulates N6-mA levels, which co-localize with heterochromatic histone modifications, namely H3K9me3. N6-mA levels are dynamically regulated by the DNA demethylase, ALKBH1, to transcriptionally silence oncogenic pathways through decreasing chromatin accessibility. Targeting the N6-mA regulator, ALKBH1, in patient-derived human glioblastoma models inhibited tumor cell proliferation and extended survival of tumor-bearing mice, supporting this novel DNA modification as a potential new molecular therapeutic target for glioblastoma. Collectively, our results uncover a novel epigenetic node in cancer through the DNA modification, N6-mA. SOURCE: Jeremy Rich (jerich@ucsd.edu) - University of California, San Diego
View on GEOView in PlutoEnhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreUse Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.
Read about post-pipeline analysisView quality control data and experiment metadata for this experiment.
Request imports from GEO or TCGA directly within Pluto Bio.
Chat with our Scientific Insights team