PLX164688

GSE115952: Non-lytic clearance of influenza B virus from infected cells [RNA-seq]

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project Host transcriptomics in influenza infection

Influenza B virus (IBV) is an acute respiratory pathogen that induces phenotypic alterations to the lung epithelium, such as the denudation of the respiratory cilium, during and after IBV infection. It has been assumed that these epithelial changes are non-adaptive, and simply the result of cellular death following lytic virus infection. However, previous reports have shown that not all infected cells are killed after viral infection; some cells can completely clear viral RNA and protein and persist in the host long-term. In this study, we utilized a novel recombinant virus in combination with a Cre recombinase-responsive transgenic mouse model to demonstrate that IBV infection leads to the formation of a population of survivor ciliated cells in the proximal airways of infected mice. We then performed transcriptional profiling on infected and surviving ciliated cell populations to determine how surviving viral infection affected these cells. To specifically profile ciliated cells, we digested mouse lungs and sorted cells based on their expression of CD24 with tdTomato as a marker of infection. We sorted cell populations from the lungs of animals mock infected with PBS (Mock), during active infection (2 DPI), and matched ciliated cell populations at 14 days post-infection that had either experienced direct viral infection (14 DPI Survivor Cell) or those that had never been infected (14 DPI). The resulting data indicate that after surviving infection and clearing the virus, survivor ciliated cells undergo significant transcriptional reprogramming. SOURCE: Nicholas Heaton (nicholas.heaton@duke.edu) - Duke University School of Medicine

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team