PLX140191

GSE115853: Organoids derived from directly reprogrammed human hepatocytes for modeling liver cancer initiation

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Hepatocellular carcinoma (HCC) and cholangiocarcinoma (ICC) are two main forms liver cancers with poor prognosis. Models for studying HCC and ICC development using human liver cells are urgently needed. Organoids serve as in vitro models for cancer studies as it recapitulates in vivo structures and microenvironment of solid tumors. Herein, we established liver cancer organoid models by introducing specific mutations into human induced hepatocyte (hiHep)-derived organoids. c-MYC and hRASG12V overexpression in hiHep organoids with repressed p53 activation by large T led to distinct HCC and ICC signatures. With these oncogenic mutations, the neoplastic hiHep organoids formed cancerous structures and possessed cancer-specific hallmarks. Comprehensive transcriptional analysis of liver cancer organoids revealed genes and pathways with disease-stage-specific alterations. Notably, with RAS mutations, hiHep organoids acquired biliary trans-differentiation, and showed a process of conversion from hepatocytes to ICC. To sum up, we have established a useful and convenient in vitro human organoid systems modeling liver cancer development. SOURCE: Lulu Sun (sunlulu2014@sibcb.ac.cn) - Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team