PLX141949
GSE113477: Activity-dependent aberrations in gene expression and alternative splicing in a mouse model of Rett syndrome
- Organsim mouse
- Type RNASEQ
- Target gene
- Project ARCHS4
Rett syndrome (RTT) is a severe neurodevelopmental disorder that is caused by mutations in the gene methyl-CpG-binding-protein-2 (MECP2). However, the molecular mechanism by which these mutations mediate the RTT neuropathology remains enigmatic. In this study, we stimulated MeCP2-null cortical neurons (in vitro) and brains (in vivo) of a RTT mouse model to explore the effect of the loss of MeCP2 function on the activity-dependent transcriptomes of the cortex and hippocampus, respectively, using RNA-seq. These analyses revealed that the loss of MeCP2 results in aberrant global pattern of gene expression, characterized predominantly by higher levels of expression of activity-dependent genes, and anomalous alternative splicing events, specifically in response to neuronal activity. SOURCE: Nurit Ballas (nurit.ballas@stonybrook.edu) - Stony Brook University
View on GEOView in PlutoKey Features
Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreAnalyze and visualize data for this experiment
Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.
Read about post-pipeline analysisView QC data and experiment metadata
View quality control data and experiment metadata for this experiment.
Request import of other GEO data
Request imports from GEO or TCGA directly within Pluto Bio.
Chat with our Scientific Insights team