Key Features
Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreThe epithelial-mesenchymal transition (EMT) is a fundamental developmental process that is abnormally activated in cancer metastasis. Dynamic changes in alternative splicing occur during EMT. ESRP1 and hnRNPM are splicing regulators that promote an epithelial splicing program and a mesenchymal splicing program, respectively. The functional relationships between these splicing factors in the genome-scale remain elusive. Comparing alternative splicing targets of hnRNPM and ESRP1 revealed that they co-regulate a set of cassette exon events, with the majority showing discordant splicing regulation. hnRNPM discordantly regulated splicing events show a positive correlation with splicing during EMT while concordant splicing events do not, highlighting the antagonistic role of hnRNPM and ESRP1 during EMT. Motif enrichment analysis near co-regulated exons identifies guanine-uridine rich motifs downstream of hnRNPM-repressed and ESRP1-enhanced exons, supporting a model of competitive binding to these cis-elements to antagonize alternative splicing. The set of co-regulated exons are enriched in genes associated with cell-migration and cytoskeletal reorganization, which are pathways associated with EMT. Splicing levels of co-regulated exons are associated with breast cancer patient survival and correlate with gene sets involved in EMT and breast cancer subtypes. In conclusion, hnRNPM and ESRP1 co-regulate antagonistically a set of alternative splicing events that occur during EMT. This regulation is likely mediated through competition for the same intronic binding sites downstream of variable exons. hnRNPM and ESRP1 regulated splicing events are associated with breast cancer survival. SOURCE: Samuel,Emerson,Harvey (samuel.harvey@bcm.edu) - Alkek Room N1100.03 Baylor College of Medicine
View on GEOView in PlutoEnhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreUse Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.
Read about post-pipeline analysisView quality control data and experiment metadata for this experiment.
Request imports from GEO or TCGA directly within Pluto Bio.
Chat with our Scientific Insights team