PLX201131

GSE111908: Pluripotent stem cell model of Nakajo-Nishimura syndrome untangles proinflammatory pathways mediated by oxidative stress

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Nakajo-Nishimura syndrome (NNS) is an immunoproteasome-associated autoinflammatory disorder caused by a mutation of the PSMB8 gene. Although dysfunction of the immunoproteasome causes various cellular stresses attributed to the overproduction of inflammatory cytokines and chemokines in NNS, the underlying mechanisms of the autoinflammation are still largely unknown. To investigate and understand the mechanisms and signal pathways in NNS, we established a panel of isogenic pluripotent stem cell (PSC) lines with PSMB8 mutation. Activity of the immunoproteasome in PSMB8-mutant PSC-derived myeloid cell lines (MT-MLs) was reduced even without stimulation compared to non-mutant-MLs. Additionally, MT-MLs showed an overproduction of inflammatory cytokines and chemokines, with elevated reactive oxygen species (ROS) and phosphorylated p38 MAPK levels. Treatment with p38 MAPK inhibitor and anti-oxidants decreased the abnormal production of cytokines and chemokines. The current PSC model revealed a specific ROS-mediated inflammatory pathway, providing a platform for the discovery of alternative therapeutic options for NNS and related immunoproteasome disorders. SOURCE: Akira Niwa (akiranw@cira.kyoto-u.ac.jp) - CiRA, Kyoto University

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team