Key Features
Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreN6-methyladenosine (m6A) is the most abundant internal modification of eukaryotic mRNA. This modification has previously been shown to alter the export kinetics for mRNAs though the molecular details surrounding this phenomenon remain poorly understood. Here we show that the m6A complex (WTAP, KIAA1429, METTL3/14) drives recruitment of the TREX mRNA export complex onto m6A modified mRNAs and this process is essential for the efficient export of certain mRNAs. Depletion of the core m6A complex leads to loss of TREX from mRNAs which undergo the m6A modification. We show that TREX stimulates recruitment of the m6A reader protein YTHDC1 to the mRNP and the m6A complex influences the interaction of TREX with YTHDC1. We suggest that m6A acts as a surrogate for other TREX recruitment mechanisms such as splicing and 5 capping, in long internal and final exons which may otherwise be devoid of this essential complex for mRNA export. SOURCE: Stuart Wilson University of Sheffield
View on GEOView in PlutoEnhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreUse Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.
Read about post-pipeline analysisView quality control data and experiment metadata for this experiment.
Request imports from GEO or TCGA directly within Pluto Bio.
Chat with our Scientific Insights team