PLX106978

GSE110513: Integrating single-cell transcriptomic data across different conditions, technologies, and species

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Computational single-cell RNA-seq (scRNA-seq) methods have been successfully applied to experiments representing a single condition, technology, or species to discover and define cellular phenotypes. However, identifying subpopulations of cells that are present across multiple datasets remains challenging. Here, we introduce an analytical strategy for integrating scRNA-seq datasets based on common sources of variation, enabling the identification of shared populations across datasets and downstream comparative analysis. Implemented in our R toolkit Seurat (http://satijalab.org/seurat/), we use our approach to align scRNA-seq datasets of peripheral blood monocytes (PBMCs) under resting and stimulated conditions, hematopoietic progenitors sequenced using two profiling technologies, and pancreatic cell atlases generated from human and mouse islets. In each case, we learn distinct or transitional cell states jointly across datasets, while boosting statistical power through integrated analysis. Our approach facilitates general comparisons of scRNA-seq datasets, potentially deepening our understanding of how distinct cell states respond to perturbation, disease, and evolution. SOURCE: Andrew Butler (abutler@nygenome.org) - Satija Lab New York Genome Center

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team