PLX171432

GSE107735: Hot-spot Mutations in RXRA Implicate Peroxisome Proliferator-Activated Receptors as Bladder Cancer Drivers

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

RXRA regulates transcription as part of a heterodimer with 14 other nuclear receptors, including the peroxisome proliferator-activated receptors (PPARs). Analysis from the TCGA raised the possibility that hyperactive PPAR signaling, either due to PPAR gamma gene amplification or RXRA hot-spot mutation (S427F/Y) drives 20-25% of bladder cancers. Here we characterize mutant RXRA, demonstrating it induces enhancer/promoter activity in the context of RXRA/PPAR heterodimers. Structure-function studies indicate the RXRA substitution allosterically regulates the PPAR AF2 domain via an aromatic interaction with the terminal tyrosine found in PPARs. In urothelium, we find PPAR agonism is sufficient to drive growth factor independent growth, but only after deletion of the tumor suppressors Kdm6a and Trp53. Similarly, mutant RXRA stimulates growth factor independent growth, in a manner reversible by PPAR inhibition. These studies reveal a pro-tumorigenic interaction between loss of tumor suppressors and PPAR activation and implicate PPARs as targetable drivers of bladder cancer. SOURCE: Vivek,K,Arora (arorav@wustl.edu) - Washington University School of Medicine

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team