PLX187926

GSE106899: Multi-Omic Molecular Profiling of Lung Cancer Risk in Chronic Obstructive Pulmonary Disease

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project Lung Cancer Transcriptomics

Chronic obstructive pulmonary disease (COPD) is a known risk factor for developing lung cancer suggesting that the COPD stroma contains factors supporting tumorigenesis. Since cancer initiation is complex we used a multi-omic approach to identify gene expression patterns that distinguish COPD stroma in patients with or without lung cancer. We obtained lung tissue from patients with COPD and lung cancer (tumor and adjacent non-malignant tissue) and those with COPD without lung cancer for proteomic and mRNA (cytoplasmic and polyribosomal) profiling. We used the joint and individual variation explained (JIVE) method to integrate and analysis across the three datasets. JIVE identified eight latent patterns that robustly distinguished and separated the three groups of tissue samples. Predictive variables that associated with the tumor, compared to adjacent stroma, were mainly represented in the transcriptomic data, whereas, predictive variables associated with adjacent tissue compared to controls was represented at the translatomic level. Kyoto Encyclopedia of Genes and Genome (KEGG) pathway analysis revealed extracellular matrix (ECM) and PI3K-Akt signaling pathways as important signals in the pre-malignant stroma. COPD stroma adjacent to lung cancer is unique and differs from non-malignant COPD tissue and is distinguished by the extracellular matrix and PI3K-Akt signaling pathways. SOURCE: Chris,H,Wendt (wendt005@umn.edu) - Pulmonary University of Minnesota

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team