PLX085102
GSE103990: Tumor evolution and drug response in patient-derived organoid models of bladder cancer
- Organsim human
- Type RNASEQ
- Target gene
- Project ARCHS4
Bladder cancer is the fifth most prevalent cancer in the U.S., yet is understudied and relatively lacking in suitable models. Here we describe a biobank of patient-derived organoid lines that recapitulates the spectrum of human bladder cancer at the histopathological and molecular levels. Organoid lines can be established efficiently from patient biopsies, including from patients before and after disease recurrence, and are interconvertible with orthotopic xenografts. Notably, these organoid lines often retain tumor heterogeneity and exhibit changes in their mutational profiles that are consistent with tumor evolution in culture. Analyses of drug response using bladder tumor organoids show partial correlations with mutational profiles as well as changes associated with treatment resistance, and specific responses can be validated using xenografts in vivo. Overall, our studies indicate that patient-derived bladder tumor organoids represent a model system for studying tumor evolution and treatment response in the context of precision cancer medicine. SOURCE: Suk Hyung Lee (sl3961@cumc.columbia.edu) - Michael Shen lab Columbia University
View on GEOView in PlutoKey Features
Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreAnalyze and visualize data for this experiment
Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.
Read about post-pipeline analysisView QC data and experiment metadata
View quality control data and experiment metadata for this experiment.
Request import of other GEO data
Request imports from GEO or TCGA directly within Pluto Bio.
Chat with our Scientific Insights team