PLX297819
GSE101485: Pseudouridylation of tRNA-derived fragments steers translation control in stem cells [Polysome-Seq]
- Organsim human
- Type RNASEQ
- Target gene
- Project ARCHS4
Pseudouridylation (pseudouridine) is the most abundant and widespread type of RNA epigenetic modification in living organisms; however, the biological role of pseudouridine remains poorly understood. Here, we show that a pseudouridine-driven posttranscriptional program steers translation control to impact stem cell commitment during early embryogenesis. Mechanistically, the pseudouridine writer PUS7 modifies and activates a network of tRNA-derived fragments (tRFs) targeting the translation initiation complex. PUS7 inactivation in embryonic stem cells impairs tRF-mediated translational regulation leading to high protein biosynthesis and abnormal germ layer specification. Dysregulation of PUS7 and tRFs in myeloid malignancies associates with altered translation rates, suggesting a role of pseudouridine in tumorigenesis. Our findings unveil a critical function of pseudouridine in directing translational control in stem cells with promisingly broad implications for human disease. SOURCE: Sonali Arora (sarora@fredhutch.org) - FHCRC
View on GEOView in PlutoKey Features
Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreAnalyze and visualize data for this experiment
Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.
Read about post-pipeline analysisView QC data and experiment metadata
View quality control data and experiment metadata for this experiment.
Request import of other GEO data
Request imports from GEO or TCGA directly within Pluto Bio.
Chat with our Scientific Insights team