PLX224643

GSE100297: Human optic chiasm from healthy controls and multiple sclerosis patients

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project Transcriptomic profiles related to multiple sclerosis

Changes in gene expression that occur across the entire central nervous system (CNS) during disease do not take into account variability from one CNS region to another and can be confounded by alterations in cellular composition during disease. Multiple sclerosis (MS) is characterized by cell proliferation, migration and damage in various cell types in different CNS regions and causes disabilities related to distinct neurological pathways, such as walking, vision and cognition. Here, a cell-specific and region-specific transcriptomic approach was used to determine changes in gene expression in astrocytes derived from spinal cord, cerebellum, cerebral cortex, and hippocampus in the preclinical MS model, chronic experimental autoimmune encephalomyelitis (EAE). RNA sequencing and bioinformatics analysis showed that changes in gene expression pathways in astrocytes differed between neuroanatomic regions. Further, while astrocytes from spinal cord showed increased expression of immune pathway genes during EAE, cholesterol biosynthesis pathway genes were decreased. Translating these findings from the preclinical model to humans, optic nerve from EAE and optic chiasm from MS each showed a significant decrease in cholesterol biosynthesis pathways. Finally, a treatment targeting cholesterol homeostasis in astrocytes was protective in EAE, suggesting a novel neuroprotective strategy for MS. Using a cell-specific and region-specific gene expression approach can provide therapeutically relevant insights into mechanisms underlying specific disabilities in complex multifocal neurological diseases. SOURCE: Yuichiro Itoh (yitoh@ucla.edu) - UCLA

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team