PLX221654

GSE100132: Gene expression analysis upon mtDNA depletion [RNA-seq]

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

The goal of the study was to understand whether mitochondrial-driven epigenetic changes regulate gene expression. Mitochondrial metabolism has been implicated in epigenetics but the extent to which this impacts gene expression is unclear. Here we show that loss of mitochondrial DNA (mtDNA) results in locus-specific alterations in histone acetylation, DNA methylation and expression of a subset of genes. Most of these changes are rescued by restoring mitochondrial electron transport in a way that maintains the oxidative tricarboxylic acid cycle, but not reactive oxygen species or ATP production, or by modulating the mitochondrial pool of acetyl-CoA. Changes in acetyl-CoA and histone acetylation precede overt mitochondrial dysfunction and significant changes in gene expression and DNA methylation. This suggests that acetyl-CoA levels signal mitochondrial status to the nucleus. Differentially expressed genes with altered histone marks or DNA methylation regulate amino acid degradation, which likely compensates for the changes in acetyl-CoA and one carbon metabolism. These have the potential to further affect methylation reactions, redox control and nucleotide levels. These results illustrate the extent to which mitochondria impact cell physiology through epigenetic remodeling. SOURCE: Janine Santos (janine.santos@nih.gov) - NIEHS

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team