PLX154617
GSE100081: Mining the stiffness-sensitive transcriptome in human vascular smooth muscle cells identifies long non-coding RNA stiffness regulators
- Organsim human
- Type RNASEQ
- Target gene
- Project ARCHS4
Vascular extracellular matrix (ECM) stiffening is a risk factor for aortic and coronary artery disease. How matrix stiffening regulates the transcriptome profile of human aortic (Ao) and coronary (Co) vascular smooth muscle cells (VSMCs) is not well understood. Furthermore, the role of long non-coding RNAs (lncRNAs) in the cellular response to stiffening has never been explored. This study characterizes the stiffness-sensitive transcriptome of human Ao and Co VSMCs and identify potentially key lncRNA regulators of stiffness-dependent VSMC functions. Ao and Co VSMCs were cultured on hydrogel substrates mimicking physiologic and pathologic ECM stiffness. Total RNA-seq was performed to compare the stiffness-sensitive transcriptome profiles of Ao and Co VSMCs. SOURCE: Daniel Rader (rader@mail.med.upenn.edu) - 11-125 SCTR University of Pennsylvania
View on GEOView in PlutoKey Features
Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreAnalyze and visualize data for this experiment
Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.
Read about post-pipeline analysisView QC data and experiment metadata
View quality control data and experiment metadata for this experiment.
Request import of other GEO data
Request imports from GEO or TCGA directly within Pluto Bio.
Chat with our Scientific Insights team