PLX136321

GSE99963: Transcriptomic and epigenetic responses to short-term nutrient-exercise stress in humans [RNA-seq]

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

High fat feeding is deleterious for skeletal muscle metabolism, while exercise has well documented beneficial effects for these same metabolic features. To identify the genomic mechanisms by which exercise ameliorates some of the deleterious effects of high fat feeding, we investigated the transcriptional and epigenetic response of human skeletal muscle to 9 days of a high-fat diet (HFD) alone (Sed-HFD) or in combination with resistance exercise (Ex-HFD), using genome-wide profiling of gene expression (by RNA-seq) and DNA methylation (by Reduced Representation Bisulfite Sequencing). HFD markedly induced expression of immune and inflammatory genes which was not attenuated by Ex. In contract, Ex markedly remodelled expression of genes associated with muscle growth and structure. We detected marked DNA methylation changes following HFD alone and in combination with Ex. Among the genes that showed significant association between DNA methylation changes and gene expression were glycogen phosphorylase, muscle associated (PYGM), which was epigenetically regulated in both groups, and angiopoiten like 4 (ANGPTL4), which was regulated only following Ex. We conclude that Short-term Ex does not prevent HFD-induced inflammatory response, but provokes a genomic response that may preserve skeletal muscle from atrophy. Epigenetic adaptation provides important mechanistic insight into the gene specific regulation of inflammatory and metabolic processes in human skeletal muscle. SOURCE: Lars,Roed,Ingerslev (ingerslev@sund.ku.dk) - Integrative Physiology Copenhagen University

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team