PLX223454

GSE98289: Post-transcriptional remodelling is temporally deregulated during motor neurogenesis in human ALS models

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Mutations causing amyotrophic lateral sclerosis (ALS) strongly implicate regulators of RNA-processing that are ubiquitously expressed throughout development. To understand the molecular impact of ALS-causing mutations on early neuronal development and disease, we performed transcriptomic analysis of differentiated human control and VCP-mutant induced pluripotent stem cells (iPSCs) during motor neurogenesis. We identify intron retention (IR) as the predominant splicing change affecting early stages of wild-type neural differentiation, targeting key genes involved in the splicing machinery. Importantly, IR occurs prematurely in VCP-mutant cultures compared with control counterparts; these events are also observed in independent RNAseq datasets from SOD1- and FUS-mutant motor neurons (MNs). Together with related effects on 3UTR length variation, these findings implicate alternative RNA-processing in regulating distinct stages of lineage restriction from iPSCs to MNs, and reveal a temporal deregulation of such processing by ALS mutations. Thus, ALS-causing mutations perturb the same post-transcriptional mechanisms that underlie human motor neurogenesis. SOURCE: Raphaelle Luisier (raphaelle.luisier@gmail.com) - Computational Biology Francis Crick Institute

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team