PLX169669

GSE97679: Rare cell variability and drug-induced reprogramming as a mode of cancer drug resistance [RNA-seq]

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Therapies targeting signaling molecules mutated in cancers can often have striking short-term effects, but the emergence of resistant cancer cells is a major barrier to full cures. Resistance can sometimes result from a secondary mutations in rare cells, but other times, there is no clear genetic cause, raising leaving the possibility of non-genetic rare cell variability. Here, we show that melanoma cells can display profound transcriptional variability at the single cell level that predicts which cells will ultimately resist drug treatment. This variability involves semi-coordinated transcription of a number of resistance markers at high levels in a very small percentage of cells. The addition of drug then induces an epigenetic reprogramming in these cells, converting the transient transcriptional state to a stably resistant state. This reprogramming begins with a progressive process consisting of a loss of SOX10-mediated differentiation followed by activation of new signaling pathways, partially mediated by activity of Jun-AP-1 and TEAD. Our work reveals the multistage nature of the acquisition of drug resistance and provides a framework for understanding resistance dynamics. We find that other cell types also exhibit sporadic expression of many of these same marker genes, suggesting the existence of a general rare-cell expression program. SOURCE: Sydney,M,Shaffer (sydshaffer@gmail.com) - University of Pennsylvania

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team