PLX054685
GSE96613: Neuronal brain region-specific DNA methylation and chromatin accessibility are associated with neuropsychiatric trait heritability [RNA-Seq]
- Organsim human
- Type RNASEQ
- Target gene
- Project ARCHS4
We analyzed differential methylation (via WGBS) between four distinct human brain regions (NAcc-nucleus accumbens, BA9-dorsolateral prefrontal cortex, BA24-anterior cingulate cortex, and HC-hippocampus) in both sorted nuclei and intact tissues. We isolated neuronal and non-neuronal (glial) nuclei from the same six individuals for each tissue via FACS using the neuronal marker, NeuN. Additionally, we performed WGBS from non-sorted tissues from these same brain regions in a total of 12 individuals (BA9 n = 9; BA24 n = 5; HC n = 6; NAcc n = 7). To complement our DNA methylation analyses, we measured gene expression (RNA-seq) and chromatin accessibility (ATAC-seq) in neuronal and non-neuronal nuclei from the nucleus accumbens and dorsolateral prefrontal cortex from six more individuals. We then performed an integrative analysis to understand how the epigenome contributes to brain region-specific function. SOURCE: Andrew,P.,Feinberg Johns Hopkins University School of Medicine
View on GEOView in PlutoKey Features
Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreAnalyze and visualize data for this experiment
Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.
Read about post-pipeline analysisView QC data and experiment metadata
View quality control data and experiment metadata for this experiment.
Request import of other GEO data
Request imports from GEO or TCGA directly within Pluto Bio.
Chat with our Scientific Insights team