PLX237139

GSE95153: COMBINING BET AND MEK INHIBITORS SYNERGISTICALLY TARGETS NRAS MUTANT MELANOMA

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Nearly 30% of all malignant melanomas harbor somatic mutations in NRAS. However, there are currently no effective targeted therapies for this tumor type. The bromodomain and extra terminal domain (BET) family of proteins are transcriptional regulators that serve as scaffolds to facilitate gene transcription by binding to acetylated lysine residues in the N-terminal tail of histones. BET/BRD proteins have emerged as therapeutic targets in a broad range of tumors. We found that BET proteins are overexpressed in NRAS mutant melanoma, and that high levels of BET family member BRD4 are associated with poor patient survival, suggesting that BRD4 plays a key role in melanoma. Consequently, we hypothesized that these epigenetic regulators constitute potential vulnerabilities that can be exploited for melanoma treatment. We found that genetic or pharmacological inhibition of BET/BRD proteins decreases viability and inhibits proliferation of NRAS mutant melanoma cells, as well as BRAF/MEK-inhibitor resistant melanoma cells harboring concurrent BRAF/NRAS mutations. However, BET inhibitors when used as single agents were either cytostatic (in vitro) or ineffective (in vivo). We therefore evaluated combinations that could maximize the efficacy of BET inhibitors in NRAS mutant melanoma. Here we report that co-targeting BET and MEK synergistically restrained tumor growth and significantly prolonged the survival of NRAS-mutant tumor bearing mice. RNA-sequencing and RPPA analysis revealed that co-treatment with BETi/MEKi synergistically downregulated cell cycle regulators and activated caspase-7. This study demonstrates that combined BET and MEK inhibition elicits robust synergistic therapeutic effects and supports the clinical utility of this combination therapy for NRAS mutant melanoma patients. SOURCE: Priyankara,J,Wickramasinghe (priyaw@wistar.org) - Genomics The Wistar Institute

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team