PLX108031

GSE94502: A novel role for the EWS portion of EWS/FLI in binding GGAA-microsatellites required for oncogenic transformation in Ewing sarcoma [RNA-Seq]

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Ewing sarcoma usually expresses the EWS/FLI fusion transcription factor oncoprotein. EWS/FLI regulates myriad genes required for Ewing sarcoma development. EWS/FLI binds GGAA-microsatellite sequences in vivo and in vitro, and these sequences provide EWS/FLI-mediated activation to reporter constructs, suggesting that they function as EWS/FLI-response elements. Genomic GGAA-microsatellites are highly variable and polymorphic. Current data suggest that there is an optimal sweet-spot GGAA-microsatellite length (of 18-26 GGAA repeats) that confers maximal EWS/FLI-responsiveness to target genes, but the mechanistic basis for this was not known. We now demonstrate the absolute necessity of an EWS/FLI-bound GGAA-microsatellite in regulation of the NR0B1 gene, as well as for Ewing sarcoma proliferation and oncogenic transformation. Biochemical studies, using recombinant 22 (a version of EWS/FLI containing only the FLI portion) demonstrated a stoichiometry of one 22-monomer binding to every two consecutive GGAA-repeats on shorter GGAA-microsatellite sequences. Surprisingly, the affinity for 22 binding to GGAA-microsatellites significantly decreased, and ultimately became unmeasureable, when the size of the GGAA-microsatellite was increased to the sweet-spot length. In contrast, a fully-functional EWS/FLI mutant (Mut9) that retains approximately half of the EWS portion of the fusion showed low affinity for smaller GGAA-microsatellites, but instead significantly increased its affinity at sweet-spot microsatellite lengths. Single-gene ChIP and genome-wide ChIP-seq and RNA-seq studies extended these findings to the in vivo setting. Taken together, these data demonstrate the absolute requirement of GGAA-microsatellites as EWS/FLI activating response elements in vivo and reveal an unsuspected novel role for the EWS portion of the EWS/FLI fusion in binding to optimal-length GGAA-microsatellites. SOURCE: Kirsten Johnson (kirsten.johnson@nationwidechildrens.org) - Stephen Lessnick Nationwide Childrens Hospital

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team