PLX309130

GSE93657: A recessive p.Cys120Arg ENPP1 Mutation Causes a Dyschromatosis Universalis Hereditaria by Altering Melanogenesis

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Propose: We used next-generation RNA sequencing (RNA-seq) to characterize the transcriptional changes in primary human melanocytes during dyschromatosis universalis hereditaria (DUH) disease. DUH patient carried missense mutation in the ENPP1 gene (c.358T>C; p.C120R). RNA-seq was performed using mRNA extracted from primary hypo- and hyper-pigmented melanocytes isolated from CUH affected patient and melanocytes from his healthy heterozygous sibling and an aged- and ethnicity-matched control.; Results: A pairwise fold-change comparison was performed and genes were computationally filtered using a cutoff of more than 2 fold change and P<0.01. We first compared hyper-pigmented melanocytes to each control individually and then overlapped the results to obtain a list of 1041 up-regulated and 692 down-regulated genes. The same analysis was done for hypo-pigmented melanocytes to found that 535 genes were up-regulated and 520 were down-regulated. Finally, to obtain a profile of the overall differential gene expression, down-regulated genes in hyper and hypo-pigmented cells were overlapped to identify 143 genes that were down-regulated in patient melanocytes compared to controls regardless of pigmentation status. Similar analysis was performed to obtain the list of 172 up-regulated genes. We selected 36 deregulated genes, most of which were associated with melanocyte development and pigmentation signaling pathways, and validated 32 of them by Q-PCR, indicating that our RNA-Seq data was accurate and reliable.; Conclusion: Our study represents the first analysis of hypo- and hyper-pigmented primary melanocytes isolated from DUH-patient versus healthy controls in DUH pathology. SOURCE: Bruno Reversade (bruno@reversade.com) - Laboratory of Human Genetics and Embryology Institute of Medical Biology/A*STAR, Singapore

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team