PLX161378

GSE92651: Akt Activation Mediates Acquired Resistance to Fibroblast Growth Factor Receptor Inhibitor BGJ398

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Activation of fibroblast growth factor receptor (FGFR) signaling through mutations, amplifications, or fusions involving FGFR1, 2, 3, or 4 are seen in multiple tumors including lung, bladder, and cholangiocarcinoma. Currently, several clinical trials are evaluating the role of novel FGFR inhibitors in solid tumors. As we move forward with FGFR inhibitors clinically, we anticipate emergence of resistance with treatment. Consequently, we sought to study the mechanism(s) of acquired resistance to FGFR inhibitors using annotated cancer cell lines. We identified cancer cell lines that have activating mutations in FGFR1, 2, or 3, and treated them chronically with the selective FGFR inhibitor, BGJ398. We observed resistance to chronic BGJ398 exposure in DMS114 (small cell lung cancer, FGFR1 amplification), and RT112 (urothelial carcinoma, FGFR3 fusion/amplification) cell lines based on viability assays. Reverse phase protein array (RPPA) analysis showed increased phosphorylation of Akt (T308 and S473) and its downstream target GSK3 (S9 and S21) in both the resistant cell lines when compared to matching controls. Results of RPPA were confirmed using immunoblots. Consequently, the addition of an Akt inhibitor (GSK2141795) or siRNA was able to restore sensitivity to BGJ398 in resistant cell lines. These data suggest a role for Akt pathway in mediating acquired resistance to FGFR inhibition. SOURCE: Eric Samorodnitsky (eric.samorodnitsky@osumc.edu) - The Ohio State University

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team