Key Features
Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreMammalian cardiomyocytes lose the ability to proliferate shortly after birth. This accounts for the limited regeneration capacity of the mammalian heart. A characteristic feature of growth arrested cardiomyocytes is binucleation, but the molecular mechanisms are not well understood. In rodents, binucleation of cardiomyocytes starts after birth and occurs through incomplete cytokinesis. Here we demonstrate an important and unexpected role of GAS2L3, a recently identified actin and tubulin binding protein, for cardiomyocyte cytokinesis during heart development in mice. Mice deficient in GAS2L3 die shortly after birth due to dilated cardiomyopathy. Cardiomyocyte-specific deletion of GAS2L3 confirmed that the phenotype resulted from the loss of GAS2L3 in cardiomyocytes. We show that a deficiency in GAS2L3 leads to a strong reduction in cardiomyocyte numbers due to reduced proliferation. In addition, the loss of Gas2l3 resulted in premature binucleation of cardiomyocytes and in induction of a p53-transcriptional program including the cell cycle inhibitor p21. Collectively, these data identify an important role for GAS2L3 in cardiomyocyte cytokinesis during development. SOURCE: Stefan Gaubatz (stefan.gaubatz@biozentrum.uni-wuerzburg.de) - Gaubatz University of Wuerzburg
View on GEOView in PlutoEnhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreUse Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.
Read about post-pipeline analysisView quality control data and experiment metadata for this experiment.
Request imports from GEO or TCGA directly within Pluto Bio.
Chat with our Scientific Insights team