Key Features
Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreThe transcription-related DNA damage response was analyzed on a genome-wide scale with great spatial and temporal resolution. Upon UV irradiation, a slowdown of transcript elongation and restriction of gene activity to the promoter-proximal ~25 kilobases is observed. This is associated with a shift from expression of long mRNAs to shorter isoforms, incorporating alternative last exons (ALEs) that are more proximal to the transcription start site. Notably, this includes a shift from a protein-coding ASCC3 mRNA to a shorter transcript isoform of which the RNA, rather than an encoded protein, is critical for the eventual recovery of transcription. The protein-coding ASCC3 isoform counteracts the function of the non-coding isoform, indicating crosstalk between them. Thus, the ASCC3 gene expresses both coding and noncoding transcript isoforms with opposite effects on transcription recovery after UV-induced DNA damage. SOURCE: Laura Williamson (Laura.Williamson@crick.ac.uk) - Svejstrup Lab The Francis Crick Institute
View on GEOView in PlutoEnhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreUse Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.
Read about post-pipeline analysisView quality control data and experiment metadata for this experiment.
Request imports from GEO or TCGA directly within Pluto Bio.
Chat with our Scientific Insights team