PLX211566

GSE89777: Pluripotent Reprogramming of Human AML Resets Leukemic Behavior and Models Therapeutic Targeting of Subclones [RNA-seq]

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Understanding the contribution of abnormal genetic and epigenetic programs to acute myeloid leukemia (AML) is necessary for the integrated design of targeted therapies. To investigate this, we determined the effect of epigenetic reprogramming on leukemic behavior by generating induced pluripotent stem cells (iPSCs) from AML patient samples harboring MLL rearrangements. AML-derived iPSCs (AML-iPSCs) retained leukemic mutations, but reset leukemic DNA methylation/gene expression patterns and lacked leukemic potential. However, when differentiated into hematopoietic cells, AML-iPSCs reacquired the ability to give rise to leukemia in vivo and reestablished leukemic methylation/gene expression patterns, including an aberrant MLL signature, indicating that epigenetic reprogramming was insufficient to eliminate leukemic behavior. In one case, we identified distinct AML-iPSC KRAS mutant and wildtype subclones that demonstrated differential growth properties and therapeutic susceptibilities, predicting KRAS wildtype clonal relapse due to increased cytarabine resistance. Increased cytarabine resistance was further observed in a cohort of KRAS wildtype MLL-rearranged AML samples, demonstrating the utility of AML-iPSCs in predicting subclonal relapse and facilitating clonal targeting in AML. SOURCE: Andrew Gentles Stanford University

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team