PLX049013

GSE89049: Macrophages redirect phagocytosis by non-professional phagocytes and influence inflammation

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Professional phagocytes (such as macrophages) and non-professional phagocytes (such as epithelial cells) clear billions of apoptotic cells and particles on a daily basis. Since these phagocytes reside in proximity in most tissues, whether cross-communication exists between them during cell clearance, and how this might impact inflammation are not known. Here, we show that macrophages, via the release of a soluble growth factor and microvesicles, redirect the type of particles engulfed by non-professional phagocytes and influence their inflammatory response. During apoptotic cell engulfment or in response to inflammation-associated cytokines, macrophages released insulin-like growth factor 1 (IGF-1). The binding of IGF-1 to its receptor on non-professional phagocytes redirected their phagocytosis, such that uptake of larger apoptotic cells was dampened while engulfment of microvesicles was enhanced. Macrophages were refractory to this IGF-1 mediated engulfment modulation. Macrophages also released microvesicles, whose uptake by epithelial cells, enhanced by IGF-1, led to decreased inflammatory responses by epithelial cells. Consistent with these observations, deletion of IGF-1 receptor in airway epithelial cells led to exacerbated lung inflammation after allergen exposure. These genetic and functional studies reveal a novel IGF-1 and microvesicle-dependent communication between macrophages and epithelial cells that can critically influence the magnitude of tissue inflammation in vivo. SOURCE: Stephen Turner University of Virginia

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team