PLX299289

GSE87340: Conserved recurrent gene mutations correlate with pathway deregulation and clinical outcomes of lung adenocarcinoma in never-smokers

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Background. Novel and targetable mutations are needed for improved understanding and treatment of lung cancer in never-smokers. Methods. Twenty-seven lung adenocarcinomas from never-smokers were sequenced by both exome and mRNA-seq with respective normal tissues. Somatic mutations were detected and compared with pathway deregulation, tumor phenotypes and clinical outcomes. Results. Although somatic mutations in DNA or mRNA ranged from hundreds to thousands in each tumor, the overlap mutations between the two were only a few to a couple of hundreds. The number of somatic mutations from either DNA or mRNA was not significantly associated with clinical variables; however, the number of overlap mutations was associated with cancer subtype. These overlap mutants were preferentially expressed in mRNA with consistently higher allele frequency in mRNA than in DNA. Ten genes (EGFR, TP53, KRAS, RPS6KB2, ATXN2, DHX9, PTPN13, SP1, SPTAN1 and MYOF) had recurrent mutations and these mutations were highly correlated with pathway deregulation and patient survival. Conclusions. The recurrent mutations present in both DNA and RNA are likely the driver for tumor biology, pathway deregulation and clinical outcomes. The information may be used for patient stratification and therapeutic target development. SOURCE: Zhifu Sun Mayo Clinic

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team