PLX212593

GSE83402: Benchmarking of RNA-sequencing analysis workflows using whole-transcriptome RT-qPCR expression data

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

RNA-sequencing has become the gold standard for whole-transcriptome gene expression quantification. Multiple algorithms have been developed to derive gene counts from sequencing reads. While a number of benchmarking studies have been conducted, the question remains how individual methods perform at accurately quantifying gene expression levels from RNA-sequencing reads. We performed an independent benchmarking study using RNA-sequencing data from the well established MAQCA and MAQCB reference samples. RNA-sequencing reads were processed using five popular workflows (Tophat-HTSeq, Tophat-Cufflinks, STAR-HTSeq, Kallisto and Salmon) and resulting gene expression measurements were compared to expression data generated by wet-lab validated qPCR assays for all protein coding genes. All methods showed high gene expression rank correlations with qPCR data. When comparing gene expression fold changes between MAQCA and MAQCB samples, about 85% of the genes showed consistent results between RNA-sequencing and qPCR data. Of note, each method revealed a small but specific set of genes with inconsistent expression measurements. A significant proportion of these method-specific inconsistent genes were reproducibly identified in independent datasets. These genes were typically smaller, had fewer exons and were lower expressed compared to genes with consistent expression measurements. We propose that careful validation is warranted when evaluating RNA-seq based expression profiles for this specific set of genes. SOURCE: Celine Everaert (celine.everaert@ugent.be) - University Ghent

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team