PLX099185

GSE82071: A Basal Stem Cell Signature Identifies Aggressive Prostate Cancer Phenotypes

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Aggressive cancers and normal stem cells often share similar molecular and functional traits. It is unclear if aggressive phenotypes of prostate cancer molecularly resemble normal stem cells residing within the human prostate. We performed high-throughput RNA sequencing on uncultured, highly purified epithelial populations from human prostates obtained after radical prostatectomy. We found the basal population to be defined by genes associated with developmental programs, epigenetic remodeling, and invasiveness. We further generated a 91-gene basal signature and applied it to gene expression datasets from patients with organ-confined or castration-resistant, metastatic prostate cancer. Metastatic prostate cancer was more enriched for the basal stem cell signature than organ-confined prostate cancer. Moreover, histological subtypes within prostate cancer metastases varied in their enrichment of the stem cell signature with small cell neuroendocrine carcinoma being the most stem cell-like. Bioinformatic analysis of the basal cell and two human small cell gene signatures identified a set of E2F target genes common to all three signatures. These results suggest that the most aggressive variants of prostate cancer share a core transcriptional program with normal prostate basal stem cells. SOURCE: Bryan SmithLaboratory of Owen Witte UCLA

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team