Key Features
Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreIn Drosophila, Polycomb Response Elements (PREs) are identified as genomic sequences allowing the maintenance of transcriptional repression in the absence of the initiating signal. Although PREs in Drosophila are well characterized, the existence of mammalian PRE-like elements remains debated. Accumulating evidence supports a model in which CpG islands function to recruit Polycomb-Group complexes (PcG), however, it is not evident which subclasses of CpG islands serve as PREs. Trithorax (Trx), which is required for positive regulation of gene expression in Drosophila, is known to co-bind Drosophila PREs where it is thought to antagonize polycomb-dependent silencing of nearby genes. Here, we demonstrate the existence of Trx-dependent H3K4 dimethylation loci that specifically mark Drosophila PREs and are required for the maintenance of expression of the nearby genes. Similarly, in human cells, we find ~ 3000 MLL1 (human Trx homologue)-dependent H3K4 dimethylation loci, which correlate strongly with CpG island density. In the absence of MLL1 and H3K4 dimethylation at these loci, there is an increase in H3K27 trimethylation levels, suggesting these sites can recruit Polycomb Repressive Complex 2 (PRC2). By inhibiting PRC2-dependent silencing in the absence of MLL1, we establish that a balance exists between MLL1 and PRC2, and their respective capacity to maintain or repress transcription. Thus, by investigating a conserved function between Trx and MLL1, we provide rules for the identification of CpG island subclasses serving as PRE-like sequences within the human genome. SOURCE: Ali Shilatifard (ash@northwestern.edu) - Shilatifard Lab Northwestern University Feinberg School of Medicine
View on GEOView in PlutoEnhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreUse Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.
Read about post-pipeline analysisView quality control data and experiment metadata for this experiment.
Request imports from GEO or TCGA directly within Pluto Bio.
Chat with our Scientific Insights team