PLX286878

GSE80774: ENL Links Histone Acetylation to Oncogenic Gene Expression in AML

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Cancer cells are characterized by aberrant epigenetic landscapes and often exploit the chromatin machinery to activate oncogenic gene expression programs1. The recognition of modified histones by reader proteins constitutes a key mechanism underlying these processes; therefore targeting such pathways holds clinical promise, as exemplified by the recent development of BET bromodomain inhibitors2,3. We recently identified the YEATS domain as a novel acetyllysine-binding module4, yet its functional importance in human cancer remains unknown. Here we show that the YEATS domain-containing protein ENL, but not its paralog AF9, is required for disease maintenance in a variety of acute myeloid leukaemias (AML). CRISPR-Cas9 mediated depletion of ENL led to anti-leukemic effects, including increased terminal myeloid differentiation and suppression of leukaemia growth in vitro and in vivo. Biochemical and crystal structural studies in vitro and ChIP-seq analyses in leukaemia cells revealed that ENL binds to acetylated histone H3, and colocalizes with H3K27ac and H3K9ac on the promoters of actively transcribed genes that are essential for leukaemias. Disrupting the interaction between the YEATS domain and histone acetylation via structure-based mutagenesis reduced RNA polymerase II recruitment on ENL target genes, thus leading to suppression of oncogenic gene expression programs. Importantly, disruption of ENLs functionality further sensitized leukaemia cells to BET inhibitors. Together, our study identifies ENL as a histone acetylation reader that regulates oncogenic transcriptional programs in AML and suggests that displacement of ENL from chromatin is a promising epigenetic therapy alone or in combination with BET inhibitors for AML SOURCE: Liling Wan (lwan@rockefeller.edu) - Laboratory of Chromatin Biology and Epigenetics The Rockefeller University

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team