Key Features
Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreAndrogen receptor (AR) splice variants (ARVs) are implicated in developing castration-resistant (CR) prostate cancer (CRPC). Little is known about the ARV-mediated transcription program in CRPC. We identified ARV-preferred binding sites (ARV-PBS) and unique transcriptome in CRPC cells. ARVs preferentially bind to enhancers located in nucleosome-depleted regions with the full AR-response element (AREfull), while full-length AR (ARFL)-PBS are enhancers resided in closed chromatin regions with the composite FOXA1-nnnn-AREhalf motif. ARV-PBS exclusively overlapped with AR binding sites in CR patients. ARV-driven genes were up-regulated in abiraterone-resistant patient specimens and promote CRPC growth. We uncover distinct genomic and epigenomic characteristics of ARV-PBS and a unique ARV-dependent transcriptional program that not only drives CR progression but could also offer new targets for therapy. Increasing evidence suggests a pivotal role of ARVs in the acquisition of anti-AR therapy resistance in CRPC. It has been shown previously that ARVs possess unique structural and functional features such as completely lacking or only containing an impaired ligand-binding domain but constitutively active. Our findings advance the understanding of ARVs by demonstrating that ARV-PBS exhibit distinctive DNA-binding motif, GC content, and nucleosome and epigenetic characteristics. We further unravel that ARV-PBS exclusively overlap with AR bindings identified from castration-resistant patients and ARV activity is significantly increased in abiraterone-resistant patients. Given that there is no drug available to target ARVs at present, identification of ARV-mediated unique downstream pathways opens new avenues for the development of effective therapeutics for CRPC. SOURCE: Zhenqing Ye (iamyezhenqing@gmail.com) - Mayo Clinic
View on GEOView in PlutoEnhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreUse Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.
Read about post-pipeline analysisView quality control data and experiment metadata for this experiment.
Request imports from GEO or TCGA directly within Pluto Bio.
Chat with our Scientific Insights team