Key Features
Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreCerebral organoids, three-dimensional cultures that model organogenesis, provide a new platform to investigate human brain development. High cost, variability and tissue heterogeneity limit accessibility and broad applications of current organoid technologies. Here we developed a miniaturized spinning bioreactor (Spin) to generate forebrain-specific organoids from human iPSCs. These organoids recapitulate key features of human cortical development, including progenitor zone organization, neurogenesis, gene expression, and importantly, a distinct human-specific outer radial glia cell layer. We have also developed protocols to generate midbrain and hypothalamic organoids. Finally, we employed this forebrain organoid platform to model Zika virus (ZIKV) exposure. Quantitative analyses revealed that preferential, productive ZIKA infection of cortical neural progenitors leads to increased cell death and reduced proliferation, resulting in decreased neuronal cell layer volume that resembles microcephaly. Together, our brain region-specific organoids and Spin provide an accessible and versatile platform for modeling human brain development and diseases, and for compound testing. SOURCE: Bing Yao (bing.yao@emory.edu) - Dr. Peng Jin Emory University
View on GEOView in PlutoEnhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreUse Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.
Read about post-pipeline analysisView quality control data and experiment metadata for this experiment.
Request imports from GEO or TCGA directly within Pluto Bio.
Chat with our Scientific Insights team