Key Features
Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreWhile long noncoding RNAs (lncRNAs) and mRNAs share similar biogenesis pathways, these two transcript classes differ in many regards. LncRNAs are less conserved, less abundant, and more tissue specific than mRNAs, implying that our understanding of lncRNA transcriptional regulation is incomplete. Here, we perform an in depth characterization of numerous factors contributing to this regulation. We find that lncRNA promoters contain fewer transcription factor binding sites than do those of mRNAs, with some notable exceptions. Surprisingly, we find that H3K9me3typically associated with transcriptional repressionis enriched at active lncRNA loci. However, the most discriminant differences between lncRNAs and mRNAs involve splicing: only half of lncRNAs are efficiently spliced, which can be partially attributed to defects in lncRNA splicing signals and diminished U2AF65 binding. These attributes are conserved between humans and mice. Finally, we find that certain transcriptional properties are enriched in known, functionally characterized lncRNAs, demonstrating that our multidimensional analysis might discern lncRNAs that are likely to be functional SOURCE: MARTA MELERinn lab Harvard University
View on GEOView in PlutoEnhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreUse Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.
Read about post-pipeline analysisView quality control data and experiment metadata for this experiment.
Request imports from GEO or TCGA directly within Pluto Bio.
Chat with our Scientific Insights team