Key Features
Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreTo understand better the factors contributing to keratoconus (KTCN), we used RNA sequencing to perform a transcriptome profile of human KTCN corneas. Over 82% of the genes and almost 75% of the transcripts detected as differentially expressed in KTCN and non-KTCN corneas were confirmed in the replication study using another set of samples. We used these differentially expressed genes to generate a network of KTCN-deregulated genes. We found an extensive disruption of collagen synthesis and maturation pathways, as well as downregulation of the core elements of the TGF-, Hippo, and Wnt signaling pathways influencing corneal organization. We identified long noncoding RNAs (lncRNAs) and conducted a computational analysis of their potential functions, and found that lncRNAs regulated the processing and expression of the aforementioned genes. This first comprehensive transcriptome profiling of human KTCN corneas points further to a complex etiology of KTCN. SOURCE: Michal Kabza Poznan University of Medical Sciences
View on GEOView in PlutoEnhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreUse Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.
Read about post-pipeline analysisView quality control data and experiment metadata for this experiment.
Request imports from GEO or TCGA directly within Pluto Bio.
Chat with our Scientific Insights team