PLX170970

GSE75530: Human RNase L Tunes Gene Expression by Selectively Destabilizing the MicroRNA-Regulated Transcriptome

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Purpose: The goal of this study was to map the pathway of mRNA decay by human RNase L; ; Methods: Total RNA was extracted (RNeasy kit, Qiagen). RNA integrity was verified by an RNA 6000 Nano Chip, using BioAnalyzer and 2100 Expert software (Agilent Technologies). The mRNA was enriched by oligo-dT pulldown from total RNA, followed by fragmentation, adapter ligation, PCR amplification, and finally sequencing on Illumina HiSeq 2000 platform. For sequencing introns, the oligo-dT pulldown step was replaced with Ribo-Zero rRNA removal (Illumina). Sequencing reads were mapped to the human genome hg19 using TopHat 2 set to map stranded reads with default parameters. Mapped read counts were obtained using HTseq-count run in union mode.; ; Results: We developed an approach for transcriptome-wide profiling of RNase L activity in human cells and identified hundreds of direct RNA targets and non-targets. We show that this RNase L-dependent decay (RLDD) selectively affects transcripts regulated by miR-17/miR-29/miR-200 and other microRNAs that function as suppressors of mammalian cell adhesion and proliferation. RNase L mimics the effects of these microRNAs and acts as a suppressor of proliferation and adhesion in mammalian cells.; ; Conclusions: Our data suggest that RLDD serves to establish an anti-proliferative state via destabilization of the microRNA-regulated transcriptome. SOURCE: Sneha Rath (sneha@princeton.edu) - Alexei Korennykh Princeton University

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team