Key Features
Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreSenescence is a state of stable cell cycle exit that has important implications for development, physiology and disease. It is distinct from quiescence in which cells can be induced to re-enter the cell cycle. Although it is well known that there are massive changes in the heterochromatin of senescent cells, the molecular mechanisms underpinning the transition from reversible quiescence into irreversible senescence have remained elusive. Here, we demonstrate that the chromatin-remodeling enzyme ATRX is required for senescence. ATRX accumulates in nuclear foci during both replicative and cellular senescence. Using ChIP-seq and RNA-seq we identified HRAS as part of an ATRX regulated gene expression program associated with senescence. Repression of HRAS is sufficient to promote the transition of quiescent cells into senescence. Thus we conclude that the repression of HRAS is likely a direct consequence of ATRX binding and critical to how it mediates its role in senescence. SOURCE: Willey Liao New York Genome Center
View on GEOView in PlutoEnhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreUse Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.
Read about post-pipeline analysisView quality control data and experiment metadata for this experiment.
Request imports from GEO or TCGA directly within Pluto Bio.
Chat with our Scientific Insights team