Key Features
Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreGlioblastoma ranks as one of the most lethal human cancers, with no effective therapies. To discover novel therapeutic targets, here we performed parallel in vivo and in vitro RNA interference screens of epigenetic regulators and show that transcription elongation factors are essential for human glioblastoma cell survival in vivo, but not in vitro. Context-specific dependency in vivo is driven by microenvironment-induced global changes in the cancer epigenome. JMJD6, a top in vivo-specific hit, binds at enhancers and correlates with increased transcription of known pause-controlled genes. JMJD6 knockdown in patient-derived glioblastoma cells enhances survival of mice bearing orthotopic tumors. Moreover, elevated levels of JMJD6 alone, as well as transcription elongation factors collectively, informs tumor grade and predicts poor prognosis for patients. Our work provides a rationale for targeting transcription elongation as a therapeutic strategy in glioblastoma and, more broadly, the power of in vivo phenotypic screening to identify therapeutically relevant targets in cancer. SOURCE: Tyler,E,MillerJeremy Rich Lab Cleveland Clinic Lerner Research Institute
View on GEOView in PlutoEnhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreUse Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.
Read about post-pipeline analysisView quality control data and experiment metadata for this experiment.
Request imports from GEO or TCGA directly within Pluto Bio.
Chat with our Scientific Insights team