Key Features
Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreN1-methyladenosine (m1A) is an abundant post-transcriptional RNA modification, yet little is known about its prevalence, topology and dynamics in mRNA. Here, we show that m1A is abundant in human mRNA, with an m1A/A ratio of ~0.02%. We develop m1A-ID-Seq, based on m1A immunoprecipitation and the inherent property of m1A to stall reverse transcription, for the transcriptome-wide m1A analysis. m1A-ID-Seq identifies 901 m1A peaks (from 583 genes) in mRNA and ncRNA, and reveals a prominent feature of enrichment in the 5-untranslated region of mRNA transcripts, distinct from that of N6-methyladenosine, the most abundant internal mammalian mRNA modification. m1A in mRNA is also reversible by ALKBH3, a known DNA/RNA demethylase. Lastly, m1A responds dynamically to stimuli and hundreds of stress-induced m1A sites are identified. Collectively, our approaches allow comprehensive analysis of m1A methylation and provide an important tool for functional studies of potential epigenetic regulation via the reversible and dynamic m1A methylation. SOURCE: Chengqi Yi (chengqi.yi@pku.edu.cn) - Peking University
View on GEOView in PlutoEnhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreUse Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.
Read about post-pipeline analysisView quality control data and experiment metadata for this experiment.
Request imports from GEO or TCGA directly within Pluto Bio.
Chat with our Scientific Insights team