PLX124430

GSE72696: Integrative fine-mapping of regulatory variants and mechanisms at coronary artery disease loci

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Coronary artery disease (CAD) is the leading cause of mortality and morbidity driven by both genetic and environmental risk factors. Meta-analyses of genome-wide association studies (GWAS) have identified multiple single nucleotide polymorphisms (SNPs) associated with CAD and myocardial infarction (MI) susceptibility in multi-ethnic populations. The majority of these variants reside in non-coding regulatory regions and are co-inherited with hundreds of candidate regulatory SNPs. Herein, we use integrative genomic, epigenomic, and transcriptomic fine-mapping in human coronary artery smooth muscle cells (HCASMC) and tissues to identify causal regulatory variation and mechanisms responsible for CAD associations. Using these genome-wide maps we prioritize 65 candidate variants and perform allele-specific binding and expression analyses on 7 top candidates. We validate our findings in two independent cohorts of diseased human arterial expression quantitative trait loci (eQTL), which together demonstrate fundamental links between CAD associations and regulatory function in the appropriate disease context. SOURCE: Thomas Quertermous (tomq1@stanford.edu) - Quertermous Stanford University

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team