PLX250248

GSE71289: Transcriptome profiling of human neural progenitor cells and neurons with DISC1 interruption

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Purpose: Genetic and clinical association studies have identified disrupted-in-schizophrenia 1 (DISC1) as a candidate risk gene for major mental illness. DISC1 is interrupted by a balanced chr(1;11) translocation in a Scottish family, in which the translocation predisposes to psychiatric disorders. We investigate the consequences of DISC1 interruption in human neural cells using TALENs or CRISPR-Cas9 to target the DISC1 locus. We sought to compare the gene expression profiles of human neural progenitor cells (NPCs) and neurons with interruption of the DISC1 gene in exon 2 (affecting all known coding transcripts) or exon 8 (near the site of the Scottish translocation, affecting longer transcripts).; Methods: Wild-type and DISC1-targeted iPSCs (wild-type = "WT", exon 8 single allelic frameshift mutant = "ex8_wm", exon 8 biallelic frameshift mutant = "ex8_mm", exon 2 biallelic frameshift mutant = "ex2mm") were differentiated to NPCs and neurons using an embryoid aggregate method. NPC or neuronal cultures were used for RNA harvest and subsequent paired-end stranded sequencing of >50M reads/sample and 3-6 biological replicates per group.; Results: We find that a subset of genes related to neuronal differentiation and development are dysregulated with DISC1 disruption at the NPC timepoint, whereas expression of genes related to neuronal function and signaling are altered at the neuronal timepoint. This study implicates DISC1 as a regulator of neuronal development. SOURCE: Kenneth,S.,KosikKosik UCSB

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team