Key Features
Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreA greater understanding of the molecular pathways that underpin the unique human hematopoietic stem and progenitor cell (HSPC) self-renewal program will improve strategies to expand these critical cell types for regenerative therapies. The post-transcriptional mechanisms guiding HSPC fate during ex vivo expansion have not been closely investigated. Using shRNA-mediated knockdown, we show that the RNA-binding protein (RBP) Musashi-2 (MSI2) is required for human HSPC self-renewal. Conversely, when overexpressed, MSI2 induces multiple pro-self-renewal phenotypes, including significant ex vivo expansion of short- and long-term repopulating cells through direct attenuation of aryl hydrocarbon receptor (AHR) signaling. Using a global analysis of MSI2-RNA interactions, we determined that MSI2 post-transcriptionally downregulates canonical AHR pathway components in cord blood HSPCs. Our study provides new mechanistic insight into RBP-controlled RNA networks that underlie the self-renewal process and provides evidence that manipulating such networks can provide a novel means to enhance the regenerative potential of human HSPCs expanded ex vivo. SOURCE: Brian Wilhelm (brian.wilhelm@umontreal.ca) - University of Montreal
View on GEOView in PlutoEnhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreUse Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.
Read about post-pipeline analysisView quality control data and experiment metadata for this experiment.
Request imports from GEO or TCGA directly within Pluto Bio.
Chat with our Scientific Insights team