PLX194708
GSE63900: Dual RNA-sequencing of nontypeable Haemophilus influenzae and host cell transcriptomes reveals new aspects of host-pathogen interface
- Organsim human
- Type RNASEQ
- Target gene
- Project ARCHS4
Characterization of host-pathogen interactions is critical for the development of next-generation therapies and vaccines. Classical approaches involve the use of transformed cell lines and/or animal models which may not reflect the complexity and response of the human host. We reconstituted the ciliated human bronchial epithelium in vitro using primary bronchial epithelial cells to simultaneously monitor the infection-linked global changes in nontypeable Haemophilus influenzae (NTHi) and infected host epithelia gene expression by dual RNA-seq. Acquisition of a total of nearly 2,5 billion sequences allowed construction of high-resolution strand-specific transcriptome maps of NTHi during infection of host mucosal surface and monitoring of metabolic as well as stress-induced host-adaptation strategies of this pathogen. As a part of our screening, we identified a global profile of noncoding transcripts that are candidate small RNAs regulated during human host infection in Haemophilus species. Temporal analysis of host mRNA signatures revealed significant dysregulation of target cell cytoskeleton elicited by bacterial infection, with a profound effect on intermediate filament network of bronchial epithelium. Our data provide a robust and comprehensive catalogue of regulatory responses that drive NTHi pathogenesis and gives novel insights into complex crosstalk between the host and the invading pathogen. SOURCE: Raffaele,A,Calogero (raffaele.calogero@unito.it) - Bioinformatics and Genomics Unit University of Torino
View on GEOView in PlutoKey Features
Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreAnalyze and visualize data for this experiment
Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.
Read about post-pipeline analysisView QC data and experiment metadata
View quality control data and experiment metadata for this experiment.
Request import of other GEO data
Request imports from GEO or TCGA directly within Pluto Bio.
Chat with our Scientific Insights team