Key Features
Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreEpigenetic and metabolic reprogrammings are implicated in cancer progression with unclear mechanisms. We report here that the histone methyltransferase NSD2 drives cancer cell and tumor resistance to therapeutics such as tamoxifen, doxorubicin, and radiation by reprogramming of glucose metabolism. NSD2 coordinately up-regulates expression of TIGAR, HK2 and G6PD and stimulates pentose phosphate pathway (PPP) production of NADPH for ROS reduction. We discover that elevated expression of TIGAR, previously characterized as a fructose-2,6-bisphosphatase, is localized in the nuclei of resistant tumor cells where it stimulates NSD2 expression and global H3K36me2 mark. Mechanistically, TIGAR interacts with the antioxidant regulator Nrf2 and facilitates chromatin assembly of Nrf2-H3K4me3 methylase MLL1 and elongating Pol-II, independent of its metabolic enzymatic activity. In human tumors, high levels of NSD2 correlate strongly with early recurrence and poor survival and are associated with nuclear-localized TIGAR. This study defines a nuclear TIGAR-mediated, epigenetic autoregulatory loop functioning in redox rebalance for resistance to tumor therapeutics. SOURCE: Clifford,G.,Tepper (cgtepper@ucdavis.edu) - UC Davis School of Medicine
View on GEOView in PlutoEnhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreUse Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.
Read about post-pipeline analysisView quality control data and experiment metadata for this experiment.
Request imports from GEO or TCGA directly within Pluto Bio.
Chat with our Scientific Insights team