Key Features
Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreMost B cell lymphomas arise in the germinal center (GC), where humoral immune responses evolve from potentially oncogenic cycles of mutation, proliferation, and clonal selection. Although lymphoma gene expression diverges significantly from GC-B cells, underlying mechanisms that alter the activities of corresponding regulatory elements (REs) remain elusive. Here we define the complete pathogenic circuitry of human follicular lymphoma (FL), which activates or decommissions transcriptional circuits from normal GC-B cells and commandeers enhancers from other lineages. Moreover, independent sets of transcription factors, whose expression is deregulated in FL, target commandeered versus decommissioned REs. Our approach reveals two distinct subtypes of low-grade FL, whose pathogenic circuitries resemble GC-B or activated B cells. Remarkably, FL-altered enhancers also are enriched for sequence variants, including somatic mutations, which disrupt transcription factor binding and expression of circuit-linked genes. Thus, the pathogenic regulatory circuitry of FL reveals distinct genetic and epigenetic etiologies for GC-B transformation. SOURCE: Jacqueline Payton (jpayton@path.wustl.edu) - Washington University School of Medicine
View on GEOView in PlutoEnhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreUse Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.
Read about post-pipeline analysisView quality control data and experiment metadata for this experiment.
Request imports from GEO or TCGA directly within Pluto Bio.
Chat with our Scientific Insights team