PLX117832

GSE58418: SAMHD1 is a phospho-regulated Rnase that is essential for restricting HIV-1 infection through direct cleavage of HIV-1 genomic RNA

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

SAMHD1 restricts HIV-1 replication in dendritic and other myeloid cells. SAMHD1 has been shown to possess a dGTP-dependent dNTP triphosphatase (dNTPase) activity and is proposed to inhibit HIV-1 replication by depleting the intracellular dNTP pool. Arguing against a role for SAMHD1 dNTPase in HIV-1 restriction, the phosphorylation of SAMHD1 regulates the restriction activity toward HIV-1 without affecting its ability to decrease cellular dNTP levels. Here, we show that SAMHD1 is a phospho-regulated RNase and that the RNase function is required for HIV-1 restriction. Mutation of the SAMHD1 D137 residue in the allosteric site (SAMHD1D137N) abolishes dNTPase activity but has no effect on RNase activity. This dNTPase-defective SAMHD1D137N mutant is able to restrict HIV-1 infection to nearly the same extent as wild-type SAMHD1. SAMHD1 associates with and degrades the HIV-1 genomic RNA during the early phases of infection. SAMHD1 silencing in macrophages and CD4+ T cells from healthy donors increases HIV-1 RNA stability, thus rendering the cells permissive for HIV-1 infection. Furthermore, the phosphorylation of SAMHD1 at position T592 abolishes the RNase activity toward HIV-1 RNA, and consequently the ability of SAMHD1 to restrict HIV-1 infection, uncovering the phosphorylation of SAMHD1 T592 as a negative regulatory mechanism of RNase activity. Together, our results demonstrate that SAMHD1 is an essential RNase that prevents HIV-1 infection by directly degrading HIV-1 genomic RNA in a phosphorylation-regulated manner. The unique property of SAMHD1 that cleaves HIV-1 genomic RNA with no sequence preferences could be exploited to develop a new class of intervention for error-prone retroviruses. SOURCE: Daekwan Seo (dkseo@snu.ac.kr) - Bioinformatics Core Seoul National University

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team