Key Features
Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn Morewe identify Scml2, a subunit of a germ cell-specific polycomb repressive complex 1 (PRC1), as a critical epigenetic modifier that establishes the germline-specific epigenome through two distinct functions. One of these functions is in the stem cell phase of spermatogonia and the other is on meiotic sex chromosomes. During the stem cell phase of spermatogonia, Scml2 establishes Rnf2- dependent ubiquitination of H2A (Rnf2-ubH2A) as an epigenetic memory that subsequently ensures programmed repression of somatic genes during the late stages of spermatogenesis.; Additionally, during meiosis, Scml2 interacts with H2AX and works downstream of the DNA damage response factor Mdc1 on the sex chromosomes and, contrary to autosomes, suppresses Rnf2-ubH2A for proper epigenetic programming of the sex chromosomes. Taken together, Scml2 positively regulates Rnf2-ubH2A on autosomes and negatively regulates Rnf2-ubH2A on the sex chromosomes to establish the germline-specific epigenome in spermatogenesis. Our study reveals a novel layer of epigenetic regulation in the male germline and adds further insight into the functionality of the polycomb proteins. SOURCE: Satoshi Namekawa (satoshi.namekawa@cchmc.org) - Cincinnati Children's Hospital Medical Center
View on GEOView in PlutoEnhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreUse Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.
Read about post-pipeline analysisView quality control data and experiment metadata for this experiment.
Request imports from GEO or TCGA directly within Pluto Bio.
Chat with our Scientific Insights team